Upconversion luminescence with tunable lifetime in NaYF4:Yb,Er nanocrystals: role of nanocrystal size.
نویسندگان
چکیده
Despite recent achievements to reduce surface quenching in NaYF(4):Yb,Er nanocrystals, a complete understanding of how the nanocrystal size affects the brightness of upconversion luminescence is still incomplete. Here we investigated upconversion luminescence of Yb,Er-doped nanocrystals in a broad range of sizes from 6 nm to 45 nm (cubic or hexagonal phases), displaying an increasing red-to-green luminescence intensity ratio and reduced luminescence lifetimes with decreasing size. By analyzing the upconversion process with a set of rate equations, we found that their asymptotic analytic solutions explain lower decay rates of red compared to green upconversion luminescence. Furthermore, we quantified the effect of the surface on luminescence lifetime in a model where nanocrystal emitters are divided between the near-surface and inside regions of each nanocrystal. We clarify the influence of the four nonradiative recombination mechanisms (intrinsic phonon modes, vibration energy of surface ligands, solvent-mediated quenching, and surface defects) on the decay rates for different-size nanocrystals, and find that the defect density dominates decay rates for small (below 15 nm) nanocrystals. Our results indicate that a defect-reduction strategy is a key step in producing small upconversion nanocrystals with increased brightness for a variety of bioimaging and biosensing applications.
منابع مشابه
Shell thickness dependence of upconversion luminescence of β-NaYF4:Yb, Er/β-NaYF4 core-shell nanocrystals.
NaYF4:Yb, Er/NaYF4 core-shell nanocrystals with different thickness shells were synthesized. The correlation between shell thickness and upconversion (UC) luminescence intensity was investigated experimentally and theoretically. We found that the UC fluorescence intensity of the core-shell nanocrystals is enhanced exponentially with shell thickness (d) in the form of (1-0.9 exp(-d/d0). For our ...
متن کاملEnhancing upconversion luminescence of NaYF4:Yb/Er nanocrystals by Mo(3+) doping and their application in bioimaging.
Enhancement of upconversion luminescence is imperative for the applications of upconversion nanocrystals (UCNs). In this work, we investigated the upconversion luminescence enhancement of NaYF4:Yb/Er by Mo(3+) ion doping. It was found that the upconversion luminescence intensities of the green and red emissions of UCNs co-doped with 10 mol% Mo(3+) ions were enhanced by 6 and 8 times, respective...
متن کاملSelectively enhanced red upconversion luminescence and phase/size manipulation via Fe(3+) doping in NaYF4:Yb,Er nanocrystals.
Red upconversion luminescence (UCL) is selectively enhanced by about 7 times via Fe(3+) codoping into a NaYF4:Yb,Er nanocrystalline lattice. The maximum red-to-green ratio (R/G) as well as the overall integrated UCL intensity features at an Fe(3+) content of 20 mol%. The size and phase of nanocrystals are simultaneously manipulated via Fe(3+) doping with various concentrations by a facile hydro...
متن کاملLarge enhancement of upconversion luminescence of NaYF₄:Yb³⁺/Er³⁺ nanocrystal by 3D plasmonic nano-antennas.
We investigated the enhancment of the upconversion luminescence (UCL) of NaYF4:Yb 3 + /Er 3 + co-doped nanocrystals using a 3D plasmonic nanoantenna architecture: disk-coupled dots-onpillar antenna array (D2PA). By optimizing the D2PA structure, we observed a 310-fold UCL enhancement uniformly over a large area and an 8-fold reduction in the luminescence decay time. The enhancement factor is tw...
متن کاملTemperature-dependent upconversion luminescence and dynamics of NaYF4:Yb3+/Er3+ nanocrystals: influence of particle size and crystalline phase.
Oleic acid-capped NaYF4:Yb(3+)/Er(3+) upconversion nanocrystals (UCNCs) with different sizes and crystalline phases were prepared, and their temperature-dependent upconversion luminescence (UCL) and dynamics were studied. It is interesting to observe that the temperature-dependent behavior of UCL for the β-phase (25 nm, 45 nm and bulk) and α-phase (<10 nm) UCNCs is quite different. The UCL inte...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 5 3 شماره
صفحات -
تاریخ انتشار 2013